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ABSTRACT 

Shape memory alloys (SMAs) have emerged as a class of materials with unique 
thermal and mechanical properties that have found numerous applications in 
various engineering areas. There have been a variety of applications that perform in 
a quasi-static manner. Recent work has proposed the use of porous SMAs as an 
energy absorbing material under dynamic loading conditions. Porous SMAs hold 
the promise of making high-efficiency damping devices that are superior to those 
made of conventional materials. The focus of this work is on establishing the quasi- 
static properties of porous SMA material. To accomplish this, a micromechanics- 
based analysis of the overall behavior of porous SMA is carried out. The porous 
SMA is modeled as a composite with SMA matrix, which is modeled using an 
incremental formulation, and pores as inhomogeneities of zero stiffness. The 
macroscopic constitutive behavior of the effective medium is established using the 
incremental Mori-Tanaka averaging method for a random distribution of pores, and 
a FEM analysis of a unit cell for a periodic arrangement of pores. In addition, a 
mesoscale level analysis allowing for the examination of pore size and shape 
variation effects is performed. 
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1.   INTRODUCTION 

Various applications of porous SMAs have been discussed in Part I of this 
paper. However, in order to successfully apply porous SMAs in structural 
applications, their behavior must be well understood under both quasi-static and 
dynamic loading conditions. An understanding of the static behavior is a basis for 
continuation of work into the dynamic response regime. Thus the current work 
focuses on the quasi-static modeling of porous SMAs. 

There is a great number of research papers available in the literature devoted to 
modeling of porous materials. Since the structure of equations representing SMA 
constitutive behavior can be very similar to those of rate-independent plasticity 
models, the works dealing with plastic response of porous metals are of particular 
interest. Here we present a brief overview of some of the representative works. 

Different modeling aspects of cellular solids are presented by Gibson and 
Ashby [1]. The modeling of the mechanical properties in their work is done on the 
cell level. For the case of open cells it is assumed that each cell is formed by struts, 
modeled using beam theory. For the case of closed cells, the faces of the cells are 
modeled as membranes. Both elastic properties and initiation of plasticity are 
considered. An approach based on unit cell method is presented by Herakovich and 
Baxter [2]. Their work considers porous material, which possesses a periodic 
structure such that a repeating representative volume element can be identified. 
Herakovich and Baxter [2] studied the effect of the pore geometry on the 
macroscopic response of the porous material for both elastic and elasto-plastic 
cases. 

A different approach based on the mixture theory is presented by Breuer and 
Jägering [3] for the case of fluid-saturated porous material. Both elastic and elasto- 
plastic behaviors are considered for the case of incompressible matrix and 
incompressible fluid. Another approach for modeling plastic behavior of porous 
solids found in the literature is to derive a macroscopic constitutive law [4-6]. 

Micromechanical averaging techniques can also be used to determine the 
averaged macroscopic response. In this case the porous material is treated as a 
composite with two phases: solid matrix and pores. Different approaches are taken 
in this work: one approach is to adapt an existing micromechanical averaging 
scheme to porous SMA behavior; a second approach is based on the unit cell 
representation of periodic structures; finally, a mesoscale analysis of a 
representative volume element (RVE) is performed. 

There are two widely used averaging methods: the self-consistent method and 
the Mori-Tanaka method. Both approaches have recently been applied to obtaining 
effective properties of composites with inelastic phases. For example Lagoudas 
etol. [7] have used an incremental formulation of the Mori-Tanaka method to 
obtain the effective properties of a composite with elastoplastic matrix and elastic 
fibers. In a different work, Lagoudas et a!. [8] have applied the incremental Mori- 
Tanaka method to model the behavior of a composite with elastic matrix and SMA 
fibers. Another group of researchers has applied the self-consistent technique to 
obtain the effective properties of a composite with elastoplastic matrix and SMA 



fibers [9]. The method of choice in this work is the Mori-Tanaka method in 
incremental formulation. 

An alternative formulation that assumes periodic arrangement of pores is also 
used. Both periodicity and symmetry boundary conditions reduce the analysis of the 
porous SMA material to the analysis of a unit cell [10]. For the mesoscale analysis 
the representative volume element is chosen based on the assumption that the 
distribution of pores, their size, shape and volume fraction in it are representative of 
the overall porous material. Both the unit cell and the mesoscale analyses are 
carried out using finite element method with the help of an existing dense SMA 
thermomechanical model [10,11]. 

The remainder of the paper is organized as follows: Section 2 briefly describes 
the incremental formulation of the Mori-Tanaka method; Section 3 is devoted to the 
unit cell FEM, Section 4 describes the mesoscale approach. Section 5 contains 
results and discussions. Finally some conclusions are made. 

2.   MORI-TANAKA AVERAGING METHOD 

For the application of the Mori-Tanaka averaging method the material is treated 
as a two-phase composite made of the dense SMA matrix and pores. The modeling 
of the dense SMA matrix is carried out using an existing rate-independent 
constitutive model [10,11]. Details of the model can be obtained from these 
references and are not given here for brevity. 

The SMA matrix is characterized by the microscopic stress 0",y and strain <£","'. 

Macroscopically the composite is characterized by the stress E,y and strain Ey, 

which are uniform over the RVE and are computed by volume averaging the 
correspondent microscopic quantities. For simplicity the description is restricted to 
a two-phase material, i.e., solid SMA matrix and pores of identical shape. Thus the 
porous SMA is characterized by the pore volume fraction cp and the pore shape. 
Assuming isothermal conditions and following the standard micromechanics 
approach, the relation between the globally applied increment of strain dE(j to the 

local increment of strain in the matrix ds"j is: 

deZ(xn) = A;kl(xll)dEk,, (1) 

where A"'kl (x„) is the matrix strain concentration factor and xn are the components 
of the position vector. Taking the volume average of Eq.(l) yields: 

(de^xu)) = (A^(xH))dEu. (2) 

The average matrix strain concentration factor Ayk, ={A"jkl{xnyj is found from 

the following relation: 
cpA^,+(\-cp)A;k,=Sukl, (3) 

where A?kl is the average strain concentration for the inhomogeneities (pores), Sijkl is 

the fourth order identity tensor. The pore strain concentration factor Aj}klis 

evaluated using the Mori-Tanaka averaging scheme [7]. The algorithm based on the 



incremental Mori-Tanaka averaging scheme was implemented in a user subroutine 
(UMAT) which was complied with the commercial FEM package ABAQUS. The 
Eshelby tensor, required to compute the concentration factors, cannot be found in 
closed form for the case of general loading because the phase transformation 
introduces anisotropy of the tangent stiffness tensors. Therefore, a numerical 
evaluation of the Eshelby tensor is employed in this work [12]. 

3.   UNIT CELL FINITE ELEMENT METHOD 

The unit cell FEM is used for both open-pore and closed-pore material. In-plane 
hexagonal arrangement of pores is assumed for the case of the open pores [13] and 
the open pores are assumed to be in the form of circular cylinders with generators in 
the direction of the out-of-plane axis of the dense SMA matrix. The resultant 
material possesses transverse isotropy similar to what would have been obtained if 
the cylinders were randomly arranged. On the other hand, closed pores are spheres 
distributed in a hexagonal arrangement in a plane cut and in equi-distant layers in 
the out-of-plane direction. 

Figure 1. Unit cells for open pore and closed pore SMA material. 

Assuming that the applied loads do not violate the geometric symmetry of the 
unit cell, one of the many possible representative unit cells, which can be used to 
predict the overall composite behavior, are given in Figure 1 for both open and 
closed pores. The boundary conditions for the unit cell in both cases are derived 
after taking into account both periodicity and symmetry conditions [13]. 



4. MESOSCALE REPRESENTATIVE VOLUME ELEMENT 

Micromechanics examines the behavior of porous materials through the detailed 
evaluation of a single pore and the surrounding material. Limited pore interaction 
is included in micromechanical models. Mesoscale examines the behavior of 
porous materials through evaluation, in this case computational, of a volume 
containing multiple pores. Mesoscale modeling of a representative volume element 
(RVE) is used to determine pore interactions, pore spacing and pore size effects. 

Figure 2. Finite element mesh of a 0.18 pore volume fraction randomly generated pattern. 

A two-dimensional finite element mesh representative of a lxl mm region of 
porous SMA is generated. Uniform thickness of 1 mm is assumed. The mesh 
initially consists of 2500 equal-sized square four node linear solid elements in a 50 
x 50 array. The porous microstructure is superimposed on this regular mesh by 
identification of elements that would be used to represent pores. Pores are placed in 
a random pattern. The unit pore is defined as a single element with a dimension of 
0.02x0.02 mm. The volume represented by a unit pore is 0.0004 of the total RVE 
volume. Pores are placed randomly by matching integers associated with the 
random number sequence with element ID and are allowed to group with other 
pores. This allowed for generation of pores in the pattern that are larger than the 
unit pore enabling variations in pore shape. No limit is placed on the maximum pore 
size that could occur in the RVE. Figure 2 is representative of a 0.18 pore volume 
fraction pattern. 

Two methods are used to model the material behavior of pores. For 0.18 pore 
volume fraction, pores are defined by removal of the identified elements. Then 
pores are represented by voids in the material. For higher porosity levels a very 
compliant material is used to define pores. This enables the generation of regions 
where material is completely surrounded by voided regions. This is a possible 
outcome of higher porosity in the two-dimensional representation. Use of a very 



compliant material eliminated numerical instabilities associated with this isolation 
of material. The elastic modulus £P used for pore material is defined as 10"

9
£SMA- 

This value is determined by a sensitivity study of pore volume fractions of 0.18 and 
0.33 and results in negligible differences in performance. 

5.   RESULTS AND DISCUSSION 

The constitutive response of porous SMA is obtained for axial and transverse 
loading cases for both the unit cell finite element method and the Mori-Tanaka 
method. The effective response was obtained under each loading case for pore 
volume fractions ranging from 20% to 60% comparable to the experimentally 
observed values. The material parameters chosen for the analysis are presented in 
Table 1. 

TABLE 1. SHAPE MEMORY ALLOY MATERIAL PARAMETERS 

Material 
Parameters* 

Values 

EA 70.0 x 10yPa 
E,v, 30.0 x 10vPa 
vA = vM 0.33 
pAc 0.0 J/(mJ K) 
H 0.05 

[dTj '-{$ 7.0 x 106Pa/K 

A01 315.0K 
AUi 295.0 K 
M°> 291.0 K 
M01 271.0 K 
A - austenite, M - martensite 
*See references [10,11] 

The porous material is assumed to be initially stress-free and at the austenitic 
finish temperature Aof. The effective axial stress-strain response for the case of open 
pores is shown in Figure 3 for both the unit cell FEM and the Mori-Tanaka method 
for two different pore volume fractions: cp=0.2 and cp=0.6. For this particular 
loading, the only non-zero stress components are the axial components. Note in 
Figure 3 that the material initially behaves elastically with a distinct onset of the 
phase transformation. By the end of the loading, full phase transformation has taken 
place, and the material is in the martensitic phase. Upon unloading, a distinct start 
of reverse phase transformation takes place, and upon full unloading the material is 
in the austenitic phase, and all the strain is recovered. With increasing pore volume 
fraction, the critical applied stress required to initiate phase transformation in both 
forward and reverse phase transformation decreases. Also, softening of the material 
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Figure 3. Comparison of effective axial stress-strain response of porous SMA for pore volume 
fractions of 0.2 and 0.6 as obtained by the unit cell FEM and the Mori-Tanaka method for the case 

of open porosity. 

with increasing pore volume fraction occurs. It can be observed that for the case of 
20% porosity (cp=0.2), the results are in very good agreement. However, there is a 
discrepancy at the end of the phase transformation in the results for the case of 60% 
porosity (cp=0.6). 

The effective response under transverse loading for the case of open porosity is 
shown in Figure 4 for the same values of the pore volume fraction: cp=0.2 and 
cp=0.6. The transverse behavior is markedly different from the axial behavior. In the 
case of the unit cell FEM, the amount of the applied stress for each pore volume 
fraction is chosen such that the von Mises effective stress at any matrix material 
point does not become greater than 700 MPa. This value is chosen arbitrarily to 
mimic the yield stress of a dense SMA matrix, since stress-induced plasticity is not 
modeled presently. It is important to mention that near the pore the von Mises 
effective stress can be four to five times as high as the applied stress during phase 
transformation. Also, since the stress field in the matrix is inhomogeneous and 

Figure 4. Comparison of transverse stress-strain response of porous SMA for pore volume fractions of 
0.2 and 0.6 as obtained by the unit cell FEM and the Mori-Tanaka method for the case of open porosity. 



increases non-proportionally during loading, phase transformation also occurs 
inhomogeneously throughout the matrix. In fact, as the FEM analysis showed, 
many regions of the matrix remain elastic until the end of loading depending on 
pore volume fraction. Consequently, unlike the axial case, the initiation of phase 
transformation is not distinctly obvious on the effective stress-strain curve. In 
addition, a decrease of critical applied stress for phase transformation and further 
softening of the material is observed as pore volume fraction increases (Figure 4). 

Even though similar trends are observed in the results obtained by the Mori- 
Tanaka method, there is a significant difference in critical values of the applied 
stress and the maximum transformation strain. It can be observed that the critical 
value of the applied stress is much higher for the Mori-Tanaka method than for the 
unit cell FEM. This effect can be explained by recalling that due to stress 
concentration, the von Mises stress at material points near the boundary of the pore 
is approximately three times more than the applied stress during elastic loading, and 
at least four to five times more during phase transformation. Therefore, the 
transformation starts first at the points of stress concentration. However, the Mori- 
Tanaka method uses only the average value of stress, which of course is much 
smaller than the actual stress due to concentration. Thus, the onset of the phase 
transformation occurs much later for the Mori-Tanaka method than for the unit cell 
FEM. Another observation is that while the transformation does not take place 
throughout the matrix in the case of unit cell FEM, this is not the case if the Mori- 
Tanaka method is used since all material points in the RVE are assumed to behave 
in the same fashion. That is why transformation occurs uniformly throughout the 
matrix, and full transformation is obtained at a reasonable value of applied stress. 
The same value of applied stress would theoretically produce large plastic 
deformations at material points near the pore boundary in the periodic unit cell. 

The comparison of the effective response for the case of closed porosity is 
shown in Figure 5 for pore volume fractions cp=0.2 and cp=0.6. It is observed that 

250 ■ 
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Figure 5. Comparison of effective stress-strain response of porous SMA for pore volume 
fractions of 0.2 and 0.6 as obtained by the unit cell fern and the Mori-Tanaka method for the 

case of closed porosity. 

for the case of cp=0.2 the onset of the transformation for both methods occurs at 
approximately 120 MPa, with little discrepancy observed. However, for the case of 



cp=0.6, substantial differences exist. Note that the difference between the two 
analyses is smaller compared to the open pore case. The reason is that even though 
stress concentration still exists near the pore boundaries, it is less severe for the 
spherical pores than for the cylindrical pores under transverse loading. Thus the 
difference between the averaged stress concentration calculated by the Mori-Tanaka 
method and the local stress concentration demonstrated by the unit cell FEM is 
decreased. 

Next the mesoscale finite element analysis results for cp=0.2 are presented. The 
global stress-strain response in the x-direction is shown in Figure 6 for mesoscale 
and unit cell analyses. The effective response was obtained by applying uniform 
displacement boundary conditions along one edge of the RVE, while constraining 
motion in the loading direction along the opposing edge. The RVE is free to 
contract in the other direction. As seen in Figure 6, the material behaves elastically 
under initial loading and then smoothly begins to exhibit phase transformation. The 
smooth transition is the result of the non-uniform effective stress field within the 
RVE. The unloading begins when an arbitrary value of strain concentration factor1 

is reached at any material point inside the RVE. Limited phase transformation 
occurs throughout the region until that moment (not shown here). Upon unloading, 
reverse phase transformation again takes place smoothly and full recovery of the 
material takes place as expected. 
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Figure 6. Comparison of global stress-strain response of porous SMA in the x-direction for 
mesoscale and unit cell FEM analyses. 

The amount of effective applied stress required to induce phase transformation 
as predicted by the mesoscale analysis falls within the bounds of open pore and 

1 The strain concentration factor is defined as -^, where €     is the maximum strain in the 

direction of applied load and £app is the applied strain. 



closed pore unit cell analyses. Phase transformation hardening rates are also similar. 
However, it is also noted that to achieve similar levels of transformation as obtained 
for the unit cell analysis, a higher applied strain is required, which will result in 
severe deformation at many material points. Such an analysis may not be physically 
realistic without taking into account dislocation based plasticity. 

6.   CONCLUSIONS 

The macroscopic response of porous SMAs is studied using micromechanical 
techniques by treating the porous SMA as a composite made of a dense SMA 
matrix with a distribution of pores. The unit cell FEM is employed to determine the 
effective behavior for a periodic distribution of pores, and the Mori-Tanaka 
averaging method is employed to determine the effective mechanical behavior for a 
random distribution of pores under isothermal conditions. In addition to these two 
methods, a mesoscale model of porous SMA is also presented. All methods show 
similar variation of elastic constants with respect to the pore volume fraction. The 
effective stress-strain response during phase transformation as obtained by the 
Mori-Tanaka method and the unit cell FEM is in good agreement for the case of 
axial loading of open-pore porous SMA. The discrepancy observed for the other 
loading cases is attributed to the averaging scheme applied in the Mori-Tanaka 
method that smoothes the stress concentration. Reasonable agreement is achieved 
for low to moderate (0.26 and lower) levels of pore volume fraction between the 
unit cell FEM and the mesoscale results. At the pore volume fraction of 0.33, 
results from the two computational methods diverge. 

To make a comparison with the experimental data, recall Figures 5 and 6 from 
Part I. The slope during the elastic loading (the material is in austenite) for the 
results presented in Figure 5 is approximately 16 GPa, while the slope at the 
beginning of the unloading (the material is in martensite) is approximately 11 GPa. 
The Mori-Tanaka approximation of these two parameters is 26 GPa and 11 GPa, 
respectively. Thus the approximation of the elastic modulus is in good agreement 
for the martensite phase, while some discrepancies are observed for the austenite 
phase. However, as seen in Figure 5 of Part I, the material response is non-linear 
form the beginning of the test, which indicates the start of the martensitic 
transformation. Thus, it is concluded that the stiffness is reduced which explains the 
observed discrepancy. 

The slope at the beginning of the unloading (see Figure 6, Part I) is 
approximately 20 GPa, which again disagrees with the Mori-Tanaka approximation. 
However, there is evidence that the material may not be fully transformed at the 
beginning of the unloading, i.e., part of the material is still in the austenite (stiffer) 
phase. This untransformed material is responsible for the overall stiffer response. 
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